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Abstract

The question of the demodulation of raw information delivered by phase detection probes is
reconsidered. The standard procedure providing the size distribution from chord measurements is
extended along various directions. For spherical inclusions, the presence of ¯ow inhomogeneities is
accounted for, both in the case of totally correlated or completely uncorrelated sizes and velocities.
Also, the number density, its ¯ux, as well as the mean interfacial area density, become available.
Two-phase ¯ow regions close to walls are also considered. It is shown that, using multiple point
measurements, the number density ¯ux can be reconstructed with acceptable accuracy. However, the
number density and average inclusion velocity relative to centres seem to be out of reach when using
only phase detection probes. # 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Phase detection probe; Size distribution; Interfacial area density; Number density; Number density ¯ux;
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1. Introduction

Phase detection probes are widely used for the experimental investigation of gas±liquid or
liquid±liquid two-phase ¯ows. A simple sensitive tip provides the dispersed phase indicator
function XG. From XG, the mean inclusion arrival frequency Nd (]/s) and the local dispersed
phase fraction E can be deduced provided that ¯ow conditions are stationary. The velocity of
inclusions becomes available using either double or multiple probes (Revankar and Ishii, 1993),
or a single tip with an appropriate design (Cartellier, 1992; Pinguet, 1994; Cartellier, et al.,
1996; Cartellier, 1997). Usually, only one velocity component w is available. Hence, the latter
sensors provide the joint chord (L)Ðinclusion velocity (w) distribution L(L, w) (]/m2/s), as well
as the local dispersed phase volumetric ¯ux jG. Despite continuous improvements of probe
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geometry (Gouirand, 1990; Pinguet, 1994; Cartellier et al., 1996; Cubizolles, 1996; Cartellier,
1997) and of signal processing (Zun et al., 1995, who, in parallel to their own treatment, have
also investigated the performance of various more classical techniques; Cartellier, 1997), the
above measurements are still subject to limitations mainly induced by the ®nite size of probes
and, sometimes, by incorrect or incomplete signal processing. These problems are not
addressed in the following. Instead, this paper focuses on the post-processing, which is
intended to extract complementary information from the above-mentioned raw measurements.
The questions which have been addressed thus far, concern the derivation of the size

distribution P(R) (Galaup, 1976; Herringe and Davis, 1976) and that of the mean interfacial
area density G (Galaup, 1976; Katoaka et al., 1986; Hikibi et al., 1997). Both P(R) and G are
accessible only under strong assumptions about the ¯ow structure (see the review by Cartellier
and Achard, 1991). Notably, it is often assumed that the ¯ux of the dispersed phase is locally
uniform, and that the size distribution is independent of position. However, most experimental
data gathered in con®ned two-phase ¯ows, demonstrate that phase distribution usually departs
from uniformity, and that size segregation is common. In order to improve the experimental
description of two-phase ¯ows, our ®rst goal is to relax these assumptions in order to establish
more general transformations.
The second objective is connected with the nature of variables to be determined. Indeed,

most of the above-mentioned quantities are adapted to the classical two-¯uid model, which is
based on a continuous description of both phases (Ishii, 1975). Two-phase models using
concepts of statistical mechanics and exploiting ensemble averaging (also called kinetics or
hybrid approach) are becoming popular (see for example Achard and Cartellier, 1993; Zhang
and Prosperetti, 1994; Simonin, 1996). The new quantities introduced to describe the dispersed
phase, such as the number density and its ¯ux, are relative to the position of inclusion centres.
To ensure proper comparisons between hybrid modelling and experimental results, it is
essential to measure these new quantities as directly as possible. However, in order to relate
these new unknowns to the usual quantities delivered by probes, namely Nd, jG E and L(L, w),
one has to account for some bias e�ects. Indeed, any phase detection probe detects bubbles1

whose centre is some distance away from the probe tip. Thus, the information available is not
relative to bubble centres: instead it is a spatial mean. Besides, the probe being more likely to
intercept larger bubbles, probe raw data correspond to a spatial average weighted by the size
of inclusions. Many authors have already underlined that the size distribution perceived by a
probe di�ers from the size distribution of the mixture (Galaup, 1976; Herringe and Davis,
1976; Clark and Turton, 1988). Other quantities, such as the number density and its ¯ux are
also expected to be sensitive to such e�ects. Note that quite similar di�culties occur for laser
anemometry when applied to large inclusions (see for example Cartellier and Lismonde, 1984;
Sommerfeld and Qiu, 1995). However, unlike phase Doppler anemometry, or even imaging
techniques, which provide the size of each inclusion, phase detection probes are unable to
perceive sizes directly. Consequently, as will be shown in the next sections, the data
interpretation requires additional assumptions regarding the ¯ow structure and, ultimately,
additional measurements.

1 In the following, bubbles is often used in place of inclusions.
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The paper is organized as follows. In the ®rst section, after introducing the variables
associated with the hybrid approach, the information available from an ideal probe is
considered and general relationships are established to be used with speci®c sets of assumptions
corresponding to ¯ow structures of practical importance. Sections 2 and 3 are concerned with
spatial inhomogeneities of the ¯ow in case of a probe far from walls. Section 4 is devoted to
the analysis of measurements performed in the vicinity of walls.

2. Restrictions, hypotheses and general relationships

2.1. Hybrid modelling variables

In the framework of the hybrid approach, the dispersed phase is described by product
densities of order of f (1) (x, x) and higher, where x refers to the position of inclusion centres
inside the physical domain D considered, and x denotes a set of internal coordinates. x includes
for example the velocity V0 of the inclusion mass centre, and some shape and/or size
characteristics. In the following, only spherical inclusions are considered, so that x is composed
of the velocity V0 and the radius R. The notation f (1) (x, V0, R) dR dx dV0 stands for the
average number of inclusions with a mass centre velocity within the velocity interval dV0

around V0, with a radius within [R, R+dR] and a centre in the volume element dx around x.
Note that f (1) is not a probability density function (pdf ), since it is not normalised to one:
instead, its integral over the domain described by the parameters x, V0 and R provides the
total number of inclusions present in the ¯ow. The most detailed description provided by the
hybrid approach is based on evolution equations for the product densities. It is often more
convenient to consider instead moment equations. The most usual moments are:
. the local number density n (]/m3) obtained by integrating f (1) over all possible radii and

velocities:

n�x� �
�
dR

�
dV0f

�1��x;V0;R�; �1�

. the local average inclusion velocity hVi, de®ned from the local number density ¯ux j (]/m2/s,
sometimes called ¯ux of centres) obtained by integrating V0 f (1) over all possible radii and
velocities:

j�x� �
�
dR

�
dV0V0f

�1��x;V0;R� � n�x�hVi�x�; �2�

. the joint position-size product density P (1)(x, R):

P�1��x;R� �
�
dV0 f

�1��x;V0;R�: �3�

P (1)(x, R) dx dR represents the average number of bubbles of radius between R and
R+dR with centres located in the elementary volume dx around x. From (3), one can
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de®ne the probability density function for the size conditional upon the presence of centres
at x, as:

P�Rjx� � P�1��x;R�=n�x�: �4�
In general, P(Rvx) depends on the location x. If sizes are uncorrelated with the position,
then P(Rvx) reduces to the unconditional size distribution P(R), which is the quantity most
often used in the literature. If the size distribution is not independent on position, it is no
longer possible to de®ne an unconditional size distribution P(R)Ðexcept by performing a
volume average over the entire domain occupied by the ¯ow, but such information is of
limited practical value. Instead, one has to go back to the product density P (1)(x,R) or to
P(Rvx), which are unambiguously de®ned.
To investigate the possibilities o�ered by phase detection probes to get access to the number

density, number density ¯ux, and ``size distribution'', one has to establish a set of general
relations which link the measured parameters Nd, jG, E and L(L, w) to the ®rst-order product
density function f (1). The analysis is concerned with steady two-phase ¯ows (Restriction R0)
composed of spherical inclusions (Restriction R1). The latter restriction is in agreement with
the range of applicability of the kinetics approach itself, which is appropriate for inclusions
whose shape can be described by a ®nite (and preferentially small) number of parameters. It
must be mentioned, however, that most of the procedures presented in this paper can be
extended to di�erent shapes provided that the internal coordinate x is accordingly modi®ed.
Yet, as shown by Clark and Turton (1988), analytical expressions are accessible only if all
bubbles assume axisymmetric and homothetic shapes (for example, ellipsoidal bubbles with a
®xed eccentricity).2

Let us consider a probe immersed in a two-phase ¯ow whose tip is located at a point O far
from any wall. The z-axis (unit vector k) is directed along the probe axis (Fig. 1), while the
plane (Oxy) is normal to k. It is assumed that:
Hypothesis H0: the sensor (including its support) is ideal in the sense that its presence does

not modify any characteristic of the ¯ow. Notably, it is supposed that all dwell times, velocities
and chords are correctly detected and quanti®ed. This latter assumption is clearly not valid in
practice, since whatever the sensor considered, there is always a minimum value of the chord
under which the probe detects nothing. The actual limit of detection is still not well known
(Cartellier and Barrau, 1998a,b).

2.2. General connection between true and detected size distributions

The ®rst step is aimed to relate the true size distribution P(R) at O to the detected size
distribution noted Pd. As shown notably by Galaup (1976) and by Herringe and Davis (1976),
Pd di�ers from P(R) because of the evolution of the volume scanned by a probe with the
bubble size. Let us start by expressing the average total number of bubbles Nd detected per
unit time by the probe at O. To evaluate Nd, one has to sum up the hits due to any bubble
size, velocity and position, provided that the bubbles interact with the probe tip located at O.

2 Solutions are also available when the shape is uniquely connected to the size.
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Thus,

Nd �
�
dR

�
dV0

�
x2S�V0;R�

dxV0 f
�1��x;R;V0�; �5�

where the spatial integration is performed over the probing area S(Vo, R) de®ned in a plane
perpendicular to the velocity and those extend depends on the bubble size (Fig. 1). Since phase
detection probes provide a single velocity component, this equation is too general to be
exploited. To obtain tractable expressions, the following simpli®cations are introduced:

. Hypothesis H2: f (1) is assumed not to depend on the z coordinate.

A consequence of the hypotheses H1 and H2 is that, far from walls, the probing area S(R) is
the disc of radius R centred at O. Thus:

Nd �
�
dR

�
dw

�
�x;y�2S

dx dy w f �1��x; y;R;w� �
�
nd�R� dR: �6�

In [6], the second equality de®nes the average number nd of detected bubbles of sizeR per unit time.
To go further, additional simpli®cations of the function f (1) must be made because, with a

single probe, it is di�cult to distinguish between the in¯uence of velocity and size on the
number of hits. Various sets of assumptions will be introduced in Sections 2±4 depending on
the type of ¯ow considered.

2.3. General connection between detected chords and sizes

The second relation required must link the detected chord to the ¯ow characteristics.
Starting from the product density f (1) (x, y, z, w, R), it is possible to express a product density

Fig. 1. Sketch of the extent of the probing area S for a ®xed bubble size and for two velocities.
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f (1) (L, y, z, w, R), where L is de®ned as:

L � 2
������������������������������
R2 ÿ �x2 � y2�

p
: �7�

Indeed, the function L(x, y) given by (7) being continuous and monotone, one can write

(Dubes, 1968):

f �1��L; y; z;w;R� � @L

@x

���� ����ÿ1f �1��x; y; z;w;R� � L

2x0
f �1��x0; y; z;w;R�; �8�

where:

x0 �
�����������������������������������
R2 ÿ �L=2�2 ÿ y2

q
: �9�

In the above relations, L represents the chord detected by a probe at O, from a bubble of

radius R whose centre crosses the (Oxy) plane at the coordinates (x0, y) during its movement

along z. This new product density is only meaningful for loci (x, y) within a distance R or less

from O.

To evaluate the average number of chords of value L detected per unit time from bubbles at

a ®xed y coordinate, noted L (1)(L, y, R), the ¯ux of f (1) (L, y, z, w, R) has to be integrated

over all velocity realisations. Hence:

L�1��L; y;R� �
�
dw w f �1��L; y; z;w;R�; �10�

or, using (8), and taking into account the hypothesis H2:

L�1��L; y;R� �
�
dw

L

2x0
w f �1��x0; y; z � 0;w;R�: �11�

The product density L (1)(L, R) is the integral of L (1)(L, y, R) over all possible locations y,

such that a chord of value L is detected from a bubble of radius R (Fig. 2). According to (9),

and for a probe far from walls, y ranges over the interval [ÿa, a], where a is the positive root

Fig. 2. Chord detection and the position of contributing bubbles for V0=wk.
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of a 2=R 2ÿ(L/2)2. Thus:

L�1��L;R� �
�a
ÿa

dy

�
dw

L

2x0
w f �1��x0; y; z � 0;w;R� �12�

The chord product density L (1)(L) is obtained by integrating L (1)(L, R) over the various
bubbles radii able to produce a chord L. Since only bubbles of radius L/2 and greater may
contribute to L (1)(L), the lower limit of integration is L/2. The upper limit is the maximum
radius present in the ¯ow, denoted Rmax. Thus:

L�1��L� �
�Rmax

L=2

dR

�a
ÿa

dy

�
dw

L

2x0
w f �1��x0; y; z � 0;w;R�; �13�

and the detected chord distribution L(L) equals L(L)/Nd.
Note that in (13), it is possible to account for some defects in detection by introducing the

minimum chord C that can be perceived by a given probe. If C does not depend on the
inclusion velocity, it is just required to replace the lower boundary in the integral over the
radius in (13) by the maximum of C and L/2 instead of L/2. However, the limit of detection is
likely to be expressed as a minimum dwell time, so that the minimum chord C may evolve with
the bubble velocity: if so, the exploitation of (13) will become more di�cult.
After having established some general transformations, it is now possible to specify the

meaning of ``a probe far enough from the walls''. Indeed, for the above equations to be valid,
the probing area S(V0, R) must not be altered by the presence of walls. Hence, due to
hypothesis H2, it is required that the distance between the probe and any wall is greater than
the maximum diameter of the inclusions at the probe location. This constraint applies to
Sections 2 and 3, in which spatial variations of the local dispersed phase ¯ux are considered.

3. Non-homogeneous ¯ows with uncorrelated size-velocity distributions

Additional hypotheses are now required, namely:
Hypothesis H3: the velocities and sizes are uncorrelated. This seems a reasonable hypothesis

for a large class of two-phase ¯ows, because turbulence or particle interactions weaken the
correlation between size and velocity. Clearly, the assumption H3 could be unrealistic in some
situations and a total correlation could be assumed instead. This case is considered in Section
3.
Hypothesis H4: the sizes and positions are uncorrelated. This requires that no size

segregation occurs: such a hypothesis could be incorrect, for example, in a strong shear ®eld
where transverse forces become signi®cant.
Very generally, f (1)(x, V0, R) could be written as the product g (1)(x, V0vR) P(R), where g (1) is

a product density conditioned by the size R. With hypotheses H3 and H4, the size conditioning
disappears from g (1), and P(R) is exactly the unconditional size distribution mentioned in
Section 2.1. Then, from (6), the average number nd of detected bubbles of size R per unit time
becomes:

A. Cartellier / International Journal of Multiphase Flow 25 (1999) 201±228 207



nd�R� �
�
dw

�
jx2�y2jRR2

dx dy w g�1��x; y;w�P�R�: �14�

To exploit the above equation, one has to specify some characteristics of the function g (1). All
the relations available in the literature assume that g (1) is spatially uniform except Galaup
(1976), who has tried to account for a dispersed phase fraction gradient. His attempt will be
discussed at the end of this Section.

3.1. Relation between true and detected size distributions

Equation (14) accounts for any variation of the dispersed phase velocities and their number
density (included in g (1)) with the coordinates x and y. To exploit (14), let us consider a ¯ow
with strong variations along the y-direction, but no gradient along the x-direction (Fig. 3).
This situation is encountered in plane ¯ows, but it is often locally valid for a more general
class of two-phase ¯ows. It is thus, assumed that, Hypothesis H5: f (1) does not depend on the
x coordinate.
Performing the integration along x in (14) leads to:

nd � P�R�
�
dw

��R
ÿR

dy

� ����������
R2ÿy2
p

ÿ
����������
R2ÿy2
p dx w�y� g�1��y;w�

� P�R�
��R
ÿR

dy 2
����������������
R2 ÿ y2

p �
dw w�y� g�1��y;w�

�
:

� �15�

The bracketed term in the right-hand side (rhs) of (15) represents the number of bubbles
centred at y per unit surface (normal to k) and per unit time. Since R and w are uncoupled,
and according to (2), this term is exactly the number density ¯ux j( y)= n( y)hwi( y). Thus:

nd�R� � P�R�
��R
ÿR

dy 2
����������������
R2 ÿ y2

p
j�y�: �16�

The integral on the RHS of (16) depends on R and on the spatial distribution of the number
density ¯ux in the vicinity of the probe. Let us denote this integral by B(R, j) so that (16)

Fig. 3. Number density ¯ux pro®le in the vicinity of the probe.
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reads:

nd�R� � B�R;j�P�R�: �17�
From the de®nition of the detected size distribution Pd(R), we have:

nd�R� � NdPd�R� �18�
The size distribution of detected bubbles Pd(R) can now be connected to the size distribution
relative to centres P(R). Eliminating nd(R) by combining (17) and (18), ones obtains
P(R)= [Nd/B(R, j)]Pd(R). Since P(R) is a true pdf, its integral over R equals one, so:

Nd � 1=

�
dR�Pd�R�=B�R;j��; �19�

and

P�R� � Pd�R�
B�R;j�

�
dR

Pd�R�
B�R;j�

� �ÿ1
: �20�

Formula (20) accounts for the evolution of the probe volume with the size of inclusions: the
weighting factor B includes the e�ect of the radius, as well as that of a spatial variation of the
bubble ¯ux along one coordinate.

In order to derive expressions of practical use, let us consider a Taylor expansion of the
number density ¯ux valid in the vicinity of the probe position O, i.e. j( y)= j 0

(1+ py+ qy 2), where p= @(j/j 0)/@yv0 is the local gradient of the dimensionless number
density ¯ux and q=(1/2) @2(j/j 0)/@y

2v0 is half the local curvature of the dimensionless
number density ¯ux. Performing the integral in (16) that de®nes B, it follows that:

B�R;j� � pR2j0�1� qR2=4�: �21�
The total number of detected bubbles per unit time (or the bubble arrival frequency), which
equals the integral over R of nd, is:

Nd � pj0 R2 � q

4
R4

�
;

�
�22�

where R2 and R4 represent, respectively, the second and fourth moments of the distribution
P(R) (and not Pd(R)!). Formula (20) becomes:

P�R� � Pd�R�
R2�1� qR2=4�

�
dR

Pd�R�
R2�1� qR2=4�

�ÿ1
:

"
�23�

For a spatially uniform ¯ux, j( y)= j 0, the weighting factor B equals pR 2j 0, and (23)
reduces to the classical relationship derived many times, notably by Herringe and Davis (1976):

P�R� � Pd�R�
R2

�
dR

Pd�R�
R2

�ÿ1
:

"
�24�
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An important feature of the above results, is that the gradient p is absent from (21) to (23).
Indeed, for a ¯ux evolving linearly with one space coordinate, all the ¯ux de®cit on one side of
the probe (say for y<0), is compensated by the larger contribution from the other side (say
y>0), and the ®nal result is identical to that obtained for a uniform number density ¯ux equal
to the ¯ux value at the probe position O. However, whenever the curvature 2q di�ers from
zero, there is no longer a balance between contributions from each side of the probe, and the
transformation between observed and actual size distributions must account for the squared
variation of the ¯ux with position, as shown by (23). Also, from (22), the bubble arrival
frequency becomes sensitive to the fourth moment of the true size distribution.
According to (23), the experimental determination of P(R) requires the knowledge of the

detected distribution Pd(R), as well as that of the curvature of the ¯ux spatial distribution. Let
us now consider the determination of Pd(R).

3.2. Link between chord and size distributions

To obtain Pd(R), one must exploit the detected chord distribution L(L). Using H3 and H4
to decompose f (1) as g (1)P(R), (13) becomes:

L�1��L� � L

2

�Rmax

L=2

dR P�R�
�a
ÿa

dy
1

x0

�
dw w g�1��x0; y; z � 0;w�

� L

2

�Rmax

L=2

dR P�R�
�a
ÿa

dy
j�x0; y�

x0
;

�25�

since the integral over the velocity is precisely the number density ¯ux at the coordinate (x 0, y)
i.e. j(x 0, y).
Again, to derive a useful formula, the form of the spatial evolution of j(x 0, y) must be

speci®ed, and as before, a Taylor expansion is considered. Evaluating the integral over y
involved in (25), one ®nds:

L�1��L� � j0

p
2

�Rmax

L=2

dR P�R�L 1� q
R2 ÿ �L=2�2

2

�
:

�
�26�

The factor inside brackets represents the relative weight of the contribution of bubbles of size
R to the chords of value L. Alternately, one can introduce the detected size distribution Pd(R).
Using (19)±(21), one obtains:

L�1��L� � Nd

�Rmax

L=2

dR Pd�R� L

2R2

�
1� q

R2 ÿ �L=22�
2

�
1� q

R2

4

�
:

� �27�

Assuming a spatially uniform distribution of the ¯ux, q is zero and formula (27) reduces to the
usual chord/size relationship (see for example the formula (50) in Cartellier and Achard, 1991).
As noted before for the link between true and detected size distributions, the gradient p does
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not appear in the derivation due to symmetry, but the curvature q appears explicitly in the
chord/size relationship (27).
To invert (27) in practice, it is convenient to use a procedure proposed by Galaup (1976)

and by Clark and Turton (1988). If Rmax denotes the largest bubble radius, the maximum
chord Lmax which can be detected, is 2 Rmax for spherical inclusions. Chord and radii are then
discretized as follows:

Li � iDL for i � 0 . . . 1; so that Lmax � 1DL;

Rj � jDR for j � 0 . . .m; where Rmax � mDR must not be less than Lmax=2:

The integration performed from L/2 to Rmax in (27), is replaced by a sum over j which begins
at j= k such that 2RkrLi. Thus:

L�Li� �
Xm
j�k

DR
Li

2R2
j

�1� q�R2
j ÿ L2

i =4�=2�
�1� qR2

j =4�
Pd�Rj� �

Xm
j�0

CijPd�Rj�DR; �28�

and the coe�cients Cij are de®ned by:

Cij � Li

R2
j

�2� q�R2
j ÿ L2

i =4��
�4� qR2

j �
� 0

for jrk;

for j < k:

�29�

The triangularity of (28) allows us to solve for Pd(R), providing q is known. In practice,
artefacts can occur because of the sensitivity of the reconstruction to the choice of the
discretisation of chords and radii: this question will not be touched upon here.

3.3. Determination of the number density ¯ux and its spatial evolution

In Section 3.1 and 3.2, relationships have been established between the chord distribution,
the detected radius distribution and true radius distribution. The next step consists of
determining the number density ¯ux j 0 at the measuring location O. For that, it is convenient
to start from the expression of the average bubble arrival frequency Nd. Introducing in (19) the
function B given by (21), ones obtains:

j0 �
1

p
Nd

�Rmax

0

dR �Pd�R�=�R2�1� qR2=4���: �30�

Since j0 depends both on Pd(R) and on q, while Pd(R) depends only on q, (30) cannot be
solved directly. Instead, the following iterative process is proposed. First, q is set to zero, and
initial guesses P d

0(R) and j0
0 can be estimated, respectively, for the detected size distribution

from (27), and for the ¯ux from (30). Since additional information is required to evaluate q,
the probe is positioned at two new locations, say A and B on both sides of O along the y-
direction. Assuming again a uniform number density ¯ux at all positions, initial guesses jA

0

and j B
0 become available, from which a ®rst estimate of the curvature, denoted as q 1, can be

deduced. The same procedure is used again by introducing this curvature q 1 in (27) and (30),
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so that a new detected size distribution P d
1(R), and new number density ¯uxes j 1 can be

computed at the three probe locations A, O and B. The above process can be repeated until a
satisfactory convergence is ensured for j0 and q. Since it has not been demonstrated that such
a convergence must occur, the validity of the procedure will be checked on an example in
Section 3.7. Finally, the true size distribution P(R) can be computed from (23). The above
procedure implicitly assumes that the curvature is the same for the three probe positions
considered. To eliminate this assumption, the above iterative process has to be applied to a
larger set of measuring locations.
An alternate possibility to evaluate the ``initial'' value of j 0 has been proposed and used by

Cubizolles (1996): it is based on the determination of the slope of the function L(L)/L for
L 4 0. For clarity, we include the demonstration here. Starting from (27) divided by Nd, and
assuming a uniform ¯ux (q=0), ones obtains:

L�L�
L
� j0

Nd

p
2

�Rmax

L=2

dR P�R�; �31�

which, after di�erentiating with respect to L, leads to:

d

dL

L�L�
L

�
� ÿ j0

Nd

p
2
P�L=2�:

�
�32�

Since P is a true probability density function, its integral over all values of the random variable
is unity. Applying this to (32) leads to:

ÿ L�L�
L

�1
0

� j0

Nd

p
2

1 dL
dLL40

:

�
�33�

To successfully apply this direct procedure, it is required that the chord distribution is smooth
enough for its slope at the origin to be accurately determined, implying a very large number of
realisations. Further, since a probe misses or improperly measures the smallest chords, not to
mention the possible validation of some signal noise as bubbles, the chord distribution is
expected to be inaccurate for small chord lengths. Hence, the slope must be estimated over a
®nite chord interval, and deviations from the actual value of dL/dL at the origin could occur.
In practice, according to the above comments, it appears crucial to check precisely the
sensitivity of slope measurement. Note also that a relation such as (33) cannot be derived if the
¯ux is not spatially uniform.

3.4. Determination of the number density and its spatial evolution

For the determination of the number density, the local dispersed phase fraction E must be
exploited. E can be expressed versus f (1). Indeed, for spherical inclusions, E results from the
contributions of all inclusions whose centre is enclosed in a sphere those radius equals that of
each inclusion considered. Hence, the void fraction at the origin O is (see Cartellier and
Achard, 1991):
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E �
�
dR

�
dV0

�
jxjRR

dx f�1��x;V0;R�: �34�

With the help of hypotheses H2, H3 and H4 (note that H1 is not required), one obtains:

E �
�
P�R� dR

�
jxjRR

dx

�
dV0g

�1��x;V0�: �35�

The integral of g (1) over all velocity realisations is precisely the number density n at the
position x. Whatever the velocities of inclusions (in direction and magnitude), the dispersed
phase fraction is given by:

E �
�
P�R� dR

�
jxjRR

dx n�x�: �36�

To proceed further, let us introduce a local Taylor expansion for the number density spatial
distribution along the direction y, n being assumed independent of x and z coordinates.
Introducing the form n( y)= n 0 (1+ sy+ ty 2), where s= @(n/n 0)/@yvO is the local gradient of
the dimensionless number density and 2t= @2(n/n 0)/@y

2vO its local curvature at O, the volume
integral in the RHS of (36) can be evaluated, leading to:

E � 4

3
pn0�R3 � t

5
R5�: �37�

For a spatially uniform number density, the dispersed phase fraction simply equals the number
density times the average volume of the bubbles present in the ¯ow. For reasons of symmetry,
the dispersed phase fraction is independent of the local gradient s of the number density. Yet,
it depends on its curvature t, weighted by the ®fth moment of the true radius distribution P(R).
In uniform ¯ows, n0 can be deduced from (37) once the size distribution P(R) has been

determined. In presence of a curvature, t must be evaluated beforehand. It should be noted
that if the spatial distribution of n is not homogeneous, then the number density ¯ux j evolves
also with space coordinates, and the iterative procedure presented in Section 3.3 must be used
®rst to determine q, j0 and P(R). Once these variables are known, another iterative process is
needed to solve (37) for n 0 and t. Again, an ``initial'' value n0

0 for the number density is
estimated imposing t=0 in (37). From phase fraction measurements at various positions in the
vicinity of point O, a curvature t 1 can be evaluated. Inserting t 1 in (37), a new value n 0

1 can be
deduced, and the process can be repeated until convergence. As before, additional measuring
locations could be used to more precisely describe the pro®le of the number density.

3.5. Flow chart of the post-treatment

At this point, all the required variables have been extracted from the raw measurements. The
possibilities o�ered by the post treatment are summarised in Fig. 4. Let us recall the various
restrictions and hypothesis required: ideal sensor (H0) at a distance to any wall greater than
the maximum bubble diameter at this location; steady (R0) and fully developed (H2: f(1)
independent on z coordinate) two-phase ¯ow (R0) with spherical inclusions (R1) travelling
along the z-direction (H1); spatial variations along a single direction y in a plane perpendicular
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to the z-axis (H5), with smooth variations so that local Taylor expansions are valid for the
number density and its ¯ux; no seggregation e�ect (H4 position and bubble size distribution are
decorrelated) and no correlation between bubble size and velocity (H3). Such conditions could be
approximately satis®ed in turbulent bubbly ¯ows with a strong imposed pressure gradient.
The upper box in Fig. 4 represents the raw information available from an ideal probe. It

should be noted that the dispersed phase volumetric ¯ux jG does not appear in this list,
although it is accessible to phase detection probes. This is because it does not add any
information, as shown by the following equalities:

jG �
P

i TGiwi

Dt
�
P

i Li

Dt
�
Z 2 Rmax

0

LL�1��L� dL � Nd

�2 Rmax

0

LL�L� dL; �38�

where i indexes the bubbles detected during Dt, and where TGi, w i and L i are, respectively, the
dwell time, the velocity and the chord of the ith bubble.
As shown by Fig. 4, starting with the void fraction E, the mean arrival bubble frequency Nd

and the chord distribution L(L), one can deduce the true size distribution P(R), the number
density ¯ux j0 and the number density n0 at the measuring location providing that the
variables j0 and n0 evolve linearly with space coordinates x and/or y: these derivations are
indicated by thin arrows. Whenever the spatial evolutions of the variables j0 and n0 have local
curvatures @2(j/j0)/@y

2 vO and @2(n/n0)/@y
2 vO, multiple point measurements must be considered

to perform the required transformations. These constraints are indicated by thick arrows in

Fig. 4. Chart for the exploitation of raw data under assumptions H0±H5.
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Fig. 4. Note that, since the size distribution is not a function of space (see hypothesis H4), it is
equivalent checking the spatial distribution of E instead of n because of (37). Similarly, jG can
be considered instead of j, because, combining (26) and (38), one obtains:3

jG � j0

p
2

�Rmax

0

dR

�2R
0

dL P�R�L2 1� q
R2 ÿ �L=2�2

2

�
� 4

3
pj0�R3 � q

5
R5

��
�39�

From j0 and n0, one can deduce the average velocity of bubble centres using (2), paralleling
here the estimate of an average dispersed phase velocity in the framework of the classical two-
¯uid model as equal to jG/E.
Lastly, the mean interfacial area density at the probe position O remains to be determined.

Starting from its general expression for spherical bubbles (see equation (36) in Cartellier and
Achard, 1991), then:

G0 �
�
dV0

�
dR

�
jxjRR

dx f �1��x;V0;R� d�jxj ÿ R�

�
�
P�R� dR

�
jxjRR

dx n�x�d�jxj ÿ R�;
�40�

where the second equality holds because of the assumptions H3 and H4 (H1 and H2 are useless).
Owing to the Dirac function, the space integral in the RHS of (40) reduces to an integral over the
surface of the sphere centred atO and of radius R. With a number density n( y) in a quadratic form
versus y and independent of z and x, elementary computations lead to:

G0 � 4p n0�R2 � t

3
R4�: �41�

In agreement with the arguments of symmetry already given, both jG and G 0 are independent of the
gradient of the number density ¯ux and that of the number density, respectively, but are sensitive to
the curvature of these quantities.

It is worthwhile to compare the above ®ndings with the results of Galaup (1976), who has
considered the in¯uence of a dispersed phase fraction gradient on the relation between chord
and size distributions. His investigation was restricted to an axisymetric spatial distribution of E
around the probe, and the result of practical value he proposed is strictly valid on the axis of a
cylindrical duct. The most important drawback of his analysis is the assumption that the
probability of occurrence of a bubble centre at a given position is proportional to the local
phase dispersed fraction: as shown by (25), this probability is controlled by the number density
¯ux and not by E. Hence, since E is connected with the number density, the proposal of Galaup

3 These equalities can be derived as well from the general relation between the local gas ¯ux and the product den-
sity function which writes:

jG �
�
dR

�
dV0

�
jxjRR

dxV0f
�1��x;V0;R�:
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is valid provided that the average velocity hVi= j/n is spatially uniform: this is a much
stronger limitation that ours.

3.6. In¯uence of the curvature

For practical purposes, it is interesting to analyse how far the curvature of the number
density ¯ux modi®es the evaluation of the size distribution. From (27), it seems justi®ed
to exploit the data as if the number density ¯ux is locally uniform provided that
q=(1/2)@2(j/j0)/@y

2 is much less than 2/Rmax
2 . To con®rm this trend, a reconstruction has

been simulated, starting from a true size distribution P(R) in the form of a Gaussian
distribution with a mean radius of 1.5 mm and a standard deviation of 0.2 mm. Using the
equations presented above, it is straightforward to compute Pd(R) and L(L) for any given
curvature q. In a second step, the true size distribution P1(R) is reconstructed from L(L)
assuming q is zero. The discrepancy between P and P1, which measures the in¯uence of
curvature, is illustrated in Fig. 5, where q is expressed in mmÿ2. The distortion is quite small
at q=0.1, and becomes signi®cant at q=0.5, which is the limit 2/Rmax

2 . For q higher than
1 mmÿ2, not only the size distribution broadens, but its maximum is shifted toward smaller
radii, inducing a large error. It should be mentioned that such curvatures are huge: they
correspond to a ¯ux varying in a ratio of at least 5 to 1 between positions 2 mm apart.
It has been also veri®ed that the reconstruction is indeed very accurate when the exact value

of q is taken into account. This result holds whatever the magnitude of q.

3.7. Validity of the iterative process

In order to provide a practical mean for the determination of the number density ¯ux, it is
worthwhile to check the feasibility and the sensitivity of the iterative procedure proposed in

Fig. 5. In¯uence of the number density ¯ux spatial curvature 2q on the reconstructed size distribution P1 without
correction for q.
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Section 3.3. In that regard, the same size distribution P(R) as in Section 3.6 is considered.
Arbitrary values are given for the ¯ux at O, for p and for q. The chosen additional positions A
and B are 2 mm away from O. For the particular case j0=1]/s mm2, p=1 mmÿ1 and
q=10 mmÿ2, the successive size distributions evaluated during the iteration process are
presented in Fig. 6. For the ®rst iteration, which corresponds to computations with q=0, the
size distribution P1(R) is incorrect as expected from Section 3.6. However, as soon as the
second iteration, the size distribution P2(R) becomes very close to its actual value, and it is
almost unaltered for any additional iteration. Fig. 7 illustrates the convergence of other
variables: the relative error compared with the actual value is plotted for the ¯ux, its spatial
gradient p, spatial curvature q, mean size, and for the fourth moment of the size distribution.
For the ®rst step, the error exceeds 1000% for j0, it is about ÿ30% on the mean radius, and

Fig. 6. Result of the iterative process used to reconstruct the size distribution in inhomogeneous conditions
(j0=1]/s/mm2, p=1 mmÿ1, q=10 mmÿ2).

Fig. 7. Convergence of the ¯ux, its gradient p, its curvature q and two moments of the reconstructed size
distribution with the number of iterations.
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about ÿ60% on the fourth moment of the size distribution. Convergence is almost ensured as
soon as the second iteration. After 3±4 iterations, the reconstructed quantities start to oscillate
regularly within20.2% of their actual values, and no additional progress can be expected. The
above trends are observed whatever the values chosen for j0, p or q. Therefore, the proposed
reconstruction process is valid, and could be used in practice.

4. Non-homogeneous ¯ow with size-velocity correlation

To complement the analysis presented in Section 3, hypotheses H0±H2 and H5 are retained,
but hypothesis H3 is now replaced by:
HypothesisH6: the velocities and the sizes are totally correlated.
It is not possible to obtain expressions in closed form while maintaining a spatial variation

of the local number density ¯ux, and so, H4 is replaced by:
Hypothesis H7: velocity and size are not correlated with the position. This requires that no

size segregation occurs and that the velocity for the dispersed phase is spatially uniform.
However, the number density itself can evolve freely around the probe.
According to H6 and H7, f (1) (x, V0, R) can be written as the product of the number density

n(x) by the size-velocity joint distribution P(V0, R). It is then possible to follow the same
developments as those presented in the previous sections but considering now P(V0, R) instead
of P(R).

4.1. Relation between true and detected size-velocity joint distributions

The average number nd(R, w) of detected bubbles of size R and velocity w is then:

nd�R;w� �
�
jx2�y2jRR2

dx dy w n�x; y�P�R;w� � w P�R;w� B�R; n�; �42�

where the factor B depends on the size R, and on the number density distribution in the
vicinity of the measuring location O. As before, nd is connected, by its de®nition, to the
detected size-velocity joint distribution Pd(R, w):

nd�R;w� � Nd Pd�R;w�: �43�
Combining (42) and (43) provides the required relations:

Nÿ1d �
�1
0

dw

�1
0

dR
Pd�R;w�
wB�R; n� ; �44�

P�R;w� � Pd�R;w�
wB�R; n�

�1
0

dw

�1
0

dR
Pd�R;w�
wB�R; n�

�ÿ1
:

"
�45�

Formula (45) accounts for the evolution of the probe volume with the size of inclusions: the
weighting, the radius, as well as that of a spatial variation of the bubble number density along
one coordinate. Introducing a Taylor expansion for the one-dimensional spatial evolution of n
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and n( y)=n0 (1+ sy+ ty 2), one obtains:

B�R; n� � pR2n0�1� tR2=4�: �46�
The bubble arrival frequency, which equals the integral over R and w of nd, is:

Nd � p n0�wR2 � t

4
wR4�; �47�

where wR2 and wR4 are moments obtained from the distribution P(R, w) (and not from Pd(R,
w)!).

4.2. Link between chord and joint size-velocity distributions

Starting from (13), the chord-velocity joint distributions are now expressed as:

L�1��L;w� �
�Rmax

L=2

wL

2
P�w;R� dR

�a
ÿa

dy
n�x0; y; z � 0�

x0
: �48�

Introducing the same spatial evolution of n leads to:

L�1��L;w� � n0
p
2

�Rmax

L=2

dR w L P�w;R� 1� t
R2 ÿ �L=2�2

2

�
:

�
�49�

This equation is similar to (26), except that the number density n 0 and its curvature t inters the
expression instead of the ¯ux and its curvature q, and that the velocity weights the joint chord-
velocity distribution. Alternately, P(R, w) could be replaced by Pd(R, w), so that:

L�1��L;w� � Nd w L

�Rmax

L=2

dR
Pd�w;R�
2R2

�
1� t

R2 ÿ �L=2�2
2

�
1� t

R2

4

�
:

� �50�

It is then possible to deduce the detected size-velocity joint distribution Pd(R, w) by inverting
the above equation, since L(L, w)=L(1)(L, w)/Nd is a measured quantity. The inversion
technique mentioned at the end of Section 3.2 remains valid: it is only required to apply it for
every value of a discrete set of velocities covering the whole interval of variation detected. This
process is direct if the local number density is linearly increasing with space coordinates. If a
spatial curvature exists, then an iterative process similar to that described in Section 3.3 and
involving measurements at various positions in the neighbourhood of O, is required to
determine both P(w, R) and t.

4.3. Determination of the number density and its ¯ux

The situation is now slightly di�erent from that investigated in Section 3. Indeed, it is the
number density and not its ¯ux which enters in all the above relationships. Once P(w, R) and t
are known, n0 can be deduced from the average bubble arrival frequency Nd using (47). Then,
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elementary computations lead to the expressions of the local gas fraction:

E � 4

3
pn0�R3 � t

5
R5� �51�

and the local gas ¯ux:

jG � 4

3
pno

�
wR3 � t

5
wR5

�
: �52�

Note that the curvature t can be estimated equivalently either from (51) or from (52), since the
various moments in (51) and (52) are not functions of position due to H7. The number density
¯ux is deduced from its de®nition:

j0 � n0 �w; �53�
where w is the average inclusion velocity (averaged over all sizes), deduced from P(w, R).
Compared with Section 3, there is no need to introduce the spatial distribution of the number
density ¯ux, since according to H7, it follows the same law as the number density. Lastly, the
average interfacial area density can be deduced from (41), which is still valid. The
corresponding ¯ow chart is presented in Fig. 8. It is valid under the following restrictions and
hypothesis: ideal sensor (H0) at a distance to any wall greater than the maximum bubble
diameter at this location; steady (R0) and fully developed (H2: f(1) independent on z
coordinate) two-phase ¯ow (R0) with spherical inclusions (R1) travelling along the z-direction
(H1); spatial variations along a single direction y in a plane perpendicular to the z axis (H5),
with smooth variations so that local Taylor expansions are valid for the number density and its

Fig. 8. Chart for the exploitation of raw data under hypotheses H0±H2 and H5±H7.
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¯ux; bubble size and velocity are totally correlated (H6), but are decorrelated with position
(H7). Such conditions could be approximately satis®ed in creaming bubbly ¯ows or bubbly
columns with a weak liquid ¯ow rate.

5. The problem of near-wall zones

Since the wall region is often of great importance when analysing two-phase ¯ows, it is
worthwhile to be able to determine the number density and its ¯ux in such zones. This
problem, is, however, more complex than those investigated in Sections 3 and 4. Indeed, let us
consider a probe tip located at a distance e from a plane wall along the y-direction (Fig. 9). In
this section, for convenience, a new system of coordinates is introduced whose origin is at the
wall. Restrictions R0 and R1 are still valid, as well as hypotheses H0±H3. Clearly, it is
necessary to account for variations of the two-phase parameters along the direction y normal
to the wall, but assumption H5 is retained. Besides, the bias e�ect now obeys a di�erent
scaling since, for a distance e less than the maximum inclusion diameter present in the ¯ow, the
probing area S(w, R) is no longer the same as that used in Sections 3 and 4. As bubble centres
cannot be located outside the ¯uid region, S(w, R) becomes now a function of the probe
position e. Moreover, this area is restricted by the interaction of bubbles with the wall. To
account for such an e�ect, and in agreement with restriction R1, it is supposed that no bubble
deformation occurs due to the vicinity of walls, so that:
Hypothesis H8: the maximum lateral positions of bubbles correspond to their interface

touching the wall (Fig. 9). In other words, f (1)(x, V0, R) is zero whenever x is within a distance
R of any wall. This assumption appears to be quite restrictive. However, as far as bubbles
remain spherical, wall repulsion forces appear to be strong enough to avoid any contact
between bubbles and walls. This is demonstrated by the existence of a near-wall single-phase

Fig. 9. Sketch of the probing area S and the locii of bubble centers contributing to a chord L for a probe in the
vicinity of a wall (the z coordinate is normal to the plane of the ®gure).
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layer observed in Poiseuille bubbly ¯ows (Cartellier et al., 1993). This seems to occur also in
turbulent conditions although the clear ¯uid layer is much thinner in that case (MarieÂ , private
communication, 1997).
In agreement with H8, sizes and positions become correlated, and, since the variations of the

velocity with y must also be considered, it is no longer possible to decompose f (1)(x, V0, R) as
in Section 3 or 4. A new treatment is thus required.

5.1. Determination of the number density ¯ux

Let us start with the chord distribution perceived by the probe at e, by using (11) which can
be rewritten:

L�1��e;L; y;R� � L

2x0
j�x0; y;R�; �54�

where

x0 �
���������������������������
a2 ÿ �yÿ e�2

q
; a2 � R2 ÿ L2=4: �55�

The probing area S(R, e) is now the portion of the disc of radius R located in the half-plane
y>R (Fig. 9). From the de®nition of S(R, e), y must pertain to the interval [maz(R, eÿ a),
e+ a], otherwise no chord of value L is detected. Thus, the average number of chords of value
L detected at e from bubbles of radius R becomes:

L�1��e;L;R� �
�e�a
max�R;eÿa�

dy
L

2x0
j�x0; y;R�; �56�

and, using the assumption H5, the product density for chords is expressed as:

L�1��e;L� � NdL�e;L� � L

2

�Rmax

L=2

dR

�e�a
max�R;eÿa�

dy
j�y;R�

x0
: �57�

The problem is now to solve the above equation for j( y, R). Clearly, this cannot be
accomplished using the information collected from a single position of the probe. One has to
consider instead a set of measurements obtained by varying the distance to the wall. To derive
equations helpful in practice, the form of the evolution of the ¯ux along the y coordinate must
again be speci®ed. Owing to the structure of (57), an expression for j( y, R) is now required
instead of j( y). In the vicinity of any position e, the following expansion is assumed to be
valid:

j�y;R� � j0�e;R� �1� p�e;R��yÿ e� � q�e;R��yÿ e�2�: �58�
Introducing the above expression in (57), the joint chord-radius product density becomes:

L�1��e;L;R� � L

2
j0�e;R� �C0�e;R;L� � p�e;R�C1�e;R;L� � q�e;R�C2�e;R;L��; �59�

where the functions C0, C1 and C2 obey:
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For eR Rÿa: C0=C1=C2=0

For Rÿ a< e< R+ a: C0, C1 and C2 are given by:

C0�e;L;R� � p
2
ÿ a sin

Rÿ e

a
;

C1�e;L;R� � ÿa
����������������������������
1ÿ Rÿ e

a

� �2
s

;

C2�e;L;R� � a2

2
C0 � Rÿ e

2
C1:

�60�

For er R+ a: C0=p, C1=0, C2=pa 2/2.

The product density for the chords L (1)(e, L) perceived at e is thus given by:

L�1��e;L� � L

2

�Rmax

L=2

dR j0 �C0�e;R;L� � p�e;R�C1�e;R;L� � q�e;R�C2�e;R;L��: �61�

For probe positions larger than 2Rmax, (61) reduces as expected to the case treated in Section
3. For a probe close to the wall, the ®rst weighting factor C0, which evolves between 0 and p,
a�ects the number density ¯ux at the measuring location. A second e�ect, quanti®ed by C1, is
connected with the gradient of the ¯ux: the symmetry responsible for the disappearance of this
term in Sections 3 and 4 no longer exists, due to the nearby wall. Last, a third correcting
factor C2 a�ects the curvature of the ¯ux.

To solve (61) for j(e, R), an iterative procedure similar to that presented in Section 3 could
be imagined. For measurements collected at various distances e, the ®rst iteration is performed
assuming that p(e, R) and q(e, R) are zero for all values of e and R. Then estimates p 1(e, R)
and q 1(e, R) can be deduced at each location e using the ¯ux j 0 evaluated at neighbouring
positions. Using p 1 and q 1 in (61), new values j 1 for the local ¯ux are produced. The process
has to be repeated until convergence. However, it is worthwhile to check the feasibility of this
iterative procedure, because, due to the strongly varying weighting functions in (61), it is not
clear whether convergence can be ensured. Notably, due to the range of variation of C0,
numerical errors are expected at least very close to the wall where C0 drops to zero. To
diminish such an e�ect, it could be advantageous to extend the measuring positions up to
2Rmax or even further from the wall, in order to dispose of some accurate estimates of the
¯uid and its gradient and curvature. This comment is supported by the fact that, far from
walls, the inversion performed using (61) is nearly as accurate as the inversion presented in
Section 3.

To test the iterative process, we choose to treat an arti®cial case. As sketched in Fig. 9, the
wall corresponds to the Oxy plane. Far from the wall, the size distribution is Gaussian.
Bubbles of all classes are allowed to touch the plane wall while remaining spherical, and the
¯ux of centres varies with the distance to the wall y, according to a second-order polynomial
law. The ¯ux has the following form:

j�y;R� � P�R� H�yÿ R� j0 �1� j1y� j2y
2�; �62�
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where P(R) is a Gaussian distribution, H is the Heaviside step function, which is equal to zero
when its argument is negative and is equal to one otherwise. j0, j1 and j2 are constants. For
the test, the mean radius has been set to 0.15 mm, the standard deviation is 0.02 mm, and
we used j0=1]/mm2 s, j1=5 mmÿ1 and j2=10 mmÿ2. From (62), the local ¯ux
expansions of the form (58) are deduced for a discrete set of positions {e i; i=1, . . . , N},
and the product densities L (1)(e i, L) which would be perceived by an ideal probe, are
computed according to (61). In practice, the positions e i considered, vary from 0.1 to
0.6 mm with a 0.1 mm step.
For the reconstruction process, one starts with the knowledge of the product densities

L (1)(e i, L) over the same set of positions {e i ; i=1, . . . , N}. A discretisation of sizes R j;
j=1, . . . , M valid for all positions is introduced. At each position e i, local expansions of
the form (58) are written, the values of j0(e i, R j), p(e i, R j) and q(e i, R j) being the
unknowns. These unknowns obey the set of equations of the form (61) written at all
positions: this set is solved using the triangularity of (61) with respect to the chord, and the
iterative procedure. The results are given in Fig. 10 as the ¯ux j versus the radius R for
the di�erent distances e i to the wall. The case e=0.6 mm corresponds to a probe beyond
the 2Rmax limit: the reconstruction is, here, quite satisfactory. The same conclusion holds
for positions closer to the wall, where the screening e�ect of the wall becomes e�ective. It
can be noticed that, down to e=0.3 mm, the various iterations lead to very similar results.
This behaviour is probably due to the strong in¯uence of the weighting factor C0 compared
with the contributions associated with the slope and curvature (even if large values have
been chosen for these quantities). Much closer to the wall, i.e. for e about 0.2 mm, the
second iteration brings, indeed, a noticeable improvement compared with the ®rst, but an
8% discrepancy remains in the maximum value of the ¯ux. For e=0.1 mm, where ¯uxes
are much weaker, the iterative process is clearly necessary to predict the correct ¯ux.
Again, a signi®cant discrepancy occurs, which is possibly connected to the abrupt increase
of the ¯ux in the vicinity of R= e. The deviation from theexact solution does not
disappear as the number of iterations increases, since oscillations start to occur. It should
be noted that better results are obtained when using a re®ned discretisation of sizes.
Hence, the proposed iterative scheme seems able to provide the number density ¯uxes in the

vicinity of walls. However, it is di�cult to estimate to which extend this technique is accurate,
notably because the imposed pro®le we used (see (62)) is rather smooth. Additional tests are
required for more complex pro®les.

5.2. The problem of the number density

The number density can, in principle, be determined from the measurements of local void
fractions. Using the general expression (34), and introducing the number density n(x, R) for the
size R, one obtains:

E�e� �
�
dR

�
x2B

dx�x;R�; �63�

where the domain of integration B is the sphere centred at e of radius R minus the portion of
this sphere at a distance to the wall less than R. The latter restriction is linked with a number
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density which drops to zero whenever y is less than R, in agreement with hypothesis H8. As

for the ¯ux, it is necessary to account for the spatial evolution of n(x, R) with the y

coordinate, and the following approximation valid in the vicinity of e is considered:

Fig. 10. Plot of the ¯ux versus the radius (in mm) for various positions. (black line=exact solution, squares=®rst
iteration dots=second iteration, closed triangles=third iteration open triangles=fourth iteration).
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n�y;R� � n0�e;R� �1� s�e;R�� yÿ e� � t�e;R��yÿ e�2�: �64�
Performing the spatial integration in (63) leads to:

E�e;R� � pn0 R2�Rÿ Z� � s
R2

2
�R2 ÿ Z2� � tR2 ÿ 1

3
�R3 ÿ Z3� ÿ s

4
�R4 ÿ Z4� ÿ t

5
�R5 ÿ Z5�

�
;

�
�65�

where Z=max (Rÿ e, ÿR). Since Z equals ÿR when R is less than e/2, and Z is Rÿ e for R
higher than e/2, the integral over the radius can be split in two contributions, leading to:

E�e�=p �
�Rmax

e=2

dR n0

�
R2e� s

R2e

2
�2Rÿ e� � tR2 ÿ 1

3
�R3 ÿ Z3� ÿ s

4
�R4 ÿ Z4�

ÿ t

5
�R5 ÿ Z5�

�
� 4

3

�e=2
0

dR n0

�
R3 ÿ t

R2

5

�
;

�66�

and, as expected, (66) leads to (37) when the position e exceeds 2Rmax. In the vicinity of
walls, we do not foresee any means to solve (66) for n 0(e, R), s(e, R) and t(e, R), even if
measurements of the dispersed phase fraction are available at multiple locations e. The mean
interfacial area density is also out of reach since, according to (40) and the extent of B, G
obeys:

G�e� �2pe
�Rmax

e=2

dR R n0 1� s

2
�2Rÿ e� � t

3
f3R�Rÿ e� � e2g

�
� 4p

�e=2
0

dR n0R
2 1� t

3
R2

�
:

��
�67�

Additional data, issued from alternate measuring techniques or possibly from an improved
phase detection technique, seem to be required to fully describe the dispersed phase
organisation in the vicinity of walls. For example, Doppler anemometry can give access to the
average bubble velocity relative to centres, so that the number density can be determined from
j(e, R) using (2).

6. Conclusion

By revisiting the exploitation of raw information issued from phase detection probes in the
framework of hybrid (or kinetic) modelling, it has been shown that variables relative to
inclusion centres, such as the number density, its ¯ux and the average inclusion velocity, are
indeed accessible with such sensors. For a probe located away from walls by an amount at
least twice the maximum bubble radius, a reconstruction process has been established in the
presence of ¯ow inhomogeneities and for ¯ows with correlated or uncorrelated size-velocity
distributions. While spatial gradients of the number density or its ¯ux do not intervene due to
symmetry, the spatial curvatures of these quantities have a profound in¯uence on the
reconstructed size or joint size-velocity distributions. Orders of magnitude are provided to
estimate up to which curvature the classical procedure for homogeneous ¯ow remains valid.
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The question of the demodulation of information in the vicinity of walls has also been
addressed. A solution has been proposed for the determination of local number density ¯uxes,
and its feasibility has been demonstrated on a particular example. However, starting from the
classical raw information available from phase detection probes, no procedure seems available
to determine the number density in such two-phase regions.
In practice, since the reconstruction process could produce artifacts, one has to be cautious

in the choice of the size resolution. This constraint implies, notably, a very long run of real
probe data. Moreover, it could be advantageous to smooth the raw chord or joint chord-
velocity distributions issued from phase detection probes, before performing any
reconstruction. In the same prospect, these distributions are distorted in the region of the
smallest chords, due to the ®nite size of the probes. To what extent such defects can in¯uence
the reconstruction is still an open question.
For all the cases considered, the required sets of hypothesis about the ¯ow structure have

been clearly established. The most important limitation of the proposed results is connected
with the assumption of a unidirectional ¯ow for the dispersed phase. Improvements can
probably be achieved by setting some probability. Alternately, the previous analysis can be
extended if two velocity components are measured: a possibility may be the use of two
mono®ber probes at nearly the same location in connection with the velocity measurement
technique based on the transient duration analysis.
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